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Subsonic Unsteady Aerodynamics Caused by Gusts
Using the Indicial Method

J. Gordon Leishman*
University of Maryland, College Park, Maryland 20742

Indicial approximations are derived for the lift on an airfoil penetrating a stationary sharp-edge gust
in two-dimensional subsonic flow. Using an assumed exponential form, the approximations have been
generalized in terms of Mach number alone by means of an optimization algorithm where certain coef-
ficients of the approximations are free parameters. The optimization is subject to prescribed constraints
in terms of the initial and asymptotic behavior of the gust response, and by requiring the response closely
match the known exact solutiens given by subsonic linear theory at earlier values of time. An alternative
approximation is obtained by using results from a direct numerical simulation of the gust problem using
computational fluid dynamecs (CFD). For an airfoil - vortex interaction problem, comparisons were made
with experimental data and CFD results. Finally, the indicial method was integrated into a three-dimen-
sional rotor simulation, and the near- and far-field acoustics were computed using the Ffowes Williams -
Hawkins equation. Good agreement was found with simultaneously measured airloads and acoustics data.

Nomenclature
a = sonic velocity, ms™'
cs = normal force coefficient caused by gust
c = rotor blade chord, m
E = complete elliptic integral of the second kind
E'(W) = incomplete elliptic integral of the second kind

F'(¥) = incomplete elliptic integral of the first kind

G, = coefficients of sharp-edged gust function

g = exponents of sharp-edged gust function

J = cost function

K = complete elliptic integral of the first kind

k = modulus of elliptic integrals

k, = gust reduced frequency

L = force on fluid in direction of R, N

M = local freestream Mach number

My, = relative Mach number between source and’
receiving point

p = Laplace variable

p' = fluctuating pressure, Pa

R = rotor radius, m

R = distance from source to observer, m

r = radial distance from vortex center, m

e = vortex core radius, m

S = blade area, m’

K = nondimensional distance in semichords, 2V#/c

t = time, s

| = local (freestream) velocity, ms™’

v, = gust convection velocity, ms™'

Ve = tangential velocity, ms ™

Vv, = normal perturbation velocity, ms™'

w = weighting term

w, = gust velocity normal to airfoil, ms™

X,» Yu» 2o = position of vortex, m

X,y = airfoil coordinate system, measured from leading
edge, m

Z; = aerodynamic deficiency functions

Zi = aerodynamic states
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= angle of attack, rad

= effective angle of attack, rad

= Glauert factor, \/1 — M?

= vortex strength (circulation), m*/s
= nondimensional vortex strength, I'/V¢
= incremental quantity

C, = differential pressure coefficient

= gust speed ratio, V/(V + V)

= air density, kg m™

= dummy variable of integration

= retarded time, s

= indicial response function

= argument of elliptic integrals

= sharp-edged gust function

= gust frequency, rad/s
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Introduction

HE accurate prediction of the unsteady forces and mo-

ments induced on airfoils encountering gusts and vortices
plays a critical role in the aeroelasticity and acoustics of air-
craft wings, rotors, and turbomachines. Gust problems are par-
ticularly acute for helicopters and tilt-rotors, where it is known
that the blades can frequently encounter the intense velocity
gradients generated by tip vortices trailed from previous
blades. These blade vortex interactions (BVI) have been iden-
tified as a significant source of unsteady aerodynamic loading
and a major contributor to rotor noise.'”

Extensive research has provided a good amount of funda-
mental knowledge on the BVI phenomenon, and has led to an
increased appreciation of the complex physical nature of the
flow and the difficulties in its prediction.’”® Accurate predic-
tions of BVI airloadings and the related rotor noise are becom-
ing more critical aspects of the basic rotor design process to
meet stringent noise certification requirements. To this end, it
must be appreciated that accurate prediction of BVI aero-
acoustic phenomena will involve blade structural dynamic and
aerodynamic modeling as a fully closed-loop system, including
free-wake modeling and perhaps the implementation of active
controls. This places serious constraints on the allowable levels
of unsteady aerodynamic modeling. Even when the aerody-
namics model may include some level of unsteady and/or com-
pressibility modeling, the approach used in modern rotor codes
such as CAMRAD’ or UMARC® do not completely distinguish
the aerodynamic effects at the blade element level caused by
the wake-induced velocity from the aerodynamic effects be-
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cause of changes in angle of attack and pitch rate. The former
can be considered as a series of gusts through which the blade
section penetrates, whereas the latter will be because of blade
motion such as flapping, pitch control inputs for trim, and
blade torsional response. Each produces a different source of
unsteady aerodynamic loading and time-history. Therefore,
not only is the lack of distinction between gust encounters and
changes in angle of attack or pitch rate fundamentally incor-
rect, but it may lead to erroneous predictions of the unsteady
airloads and resulting acoustics.

Although the practical difficulties in predicting accurately
the unsteady aerodynamics caused by gusts and wake vortices
in the rotor environment has been recognized before,”'® it has
not been fully resolved. The increasing trend toward the de-
velopment of active rotor control technologies such as blade-
mounted trailing-edge flaps for possible BVI noise and vibra-
tion reduction'"'? means that improved and validated unsteady
aerodynamic models with a more rigorous physical basis must
be developed. Furthermore, if successful active control strat-
egies for vibration and noise reduction are to be developed,
then the unsteady aerodynamics and acoustics must be written
in an appropriate numerical form that will lend itself to
straightforward implementation in a control algorithm.

The basis of the present approach is the indicial response
method. This is the response of the aerodynamic flowfield to
a step change in a set of defined boundary conditions such as
a step change in airfoil angle of attack, a step change in pitch
rate about some axis, or a step change in control surface de-
flection (such as a tab or flap). A good review of the indicial
concept is given by Tobak and Schiff."* If the indicial response
can be computed, then the response to an arbitrary motion of
the airfoil or control surface can be found by Duhamel super-
position. If the linearity of the physics over the required range
of conditions can be justified, then the advantage of the indicial
method is a tremendous saving in computational cost over per-
forming separate flowfield calculations. .

A particularly useful application of the indicial method is in
the calculation of gust-induced airloads. The unsteady effects
produced on airfoils arise primarily because of the vertical
velocity between the disturbance (the gust field) and the airfoil
surface. In linear theory, this component is used to satisfy the
boundary conditions of flow tangency on the airfoil surface.
Unsteady effects caused by the in-plane component of the gust
velocity can usually be ignored since horizontal disturbances
produce a quasisteady effect to a first-order."'* However, non-
linear effects may be a more significant factor under transonic
conditions, especially if the blade passes close to the core of
a vortex. Here, the upstream propagation of unsteady wake
effects toward the leading edge of the airfoil will appear as
increased phase lags because of the existence of a supersonic
pocket.

Using linear theory, classical incompressible solutions for
the stationary sharp-edged gust problem were obtained by
Kiissner,' and von Kdrmédn and Sears.'” For the general gust
problem in incompressible flow, Duhamel superposition can
be used with the Kiissner function y,(s) to find the aerody-
namic loads caused by an arbitrary stationary gust field. For
the traveling vertical gust case, the problem was solved nu-
merically for incompressible flow by Miles," and for subsonic
flows by Drischler and Diedrich'® in terms of the parameter A
= VI(V + V,). In the incompressible case as the propagation
speed of the traveling gust increases from zero to %« (A de-
creases from one to zero), the solution changes from the Kiiss-
ner result to the Wagner result,”® with a variety of intermediate
transitional results being obtained.'® The equivalent sharp-edge
gust solutions for the subsonic case can be obtained only ap-
proximately, and even then they are not easily represented in
a practical computational form. However, in the rotor environ-
ment, the convected wake velocities are generally much lower

than the local blade element velocity, and so the assumption =~

that A = 1 is usually valid and the stationary sharp-edged gust

result can be assumed. This produces a justifiable level of sim-
plification in the unsteady aerodynamic modeling that retains
the efficiency necessary for a comprehensive rotor aeroacous-
tics simulation.

The approach used in the present article is built partly on
the subsonic linear analysis of Lomax,”** and deals with the
problem of formulating a practical unsteady aerodynamic
model for predicting BVI-type airloads in the rotor environ-
ment. A first objective is to construct a set of generalized
sharp-edge gust functions that are valid for linearized subsonic
flow, and can be applied through indicial principles to the cal-
culation of airloads caused by arbitrary gusts. Clearly, if de-
veloped into an appropriate generalized form, numerical anal-
yses that are based on subsonic linearized unsteady aero-
dynamic models are a valuable first step toward an improved
prediction capability. This is justified in the present work using
results from BVI experiments as well as direct simulations of
the gust and BVI problems using a Navier—Stokes/Euler com-
putational fluid dynamics (CFD) solver. It is also intended to
produce an economical numerical method suitable for prelim-
inary parametric studies of the acoustic effects of airfoil—vor-
tex interaction and possible means of alleviation by means of
active blade control.'"?

Analysis
Two-Dimensional Exact Subsonic Linear Theory

Unlike the classical Kiissner sharp-edged gust function,
there are no equivalent exact solutions for the gust available
in the subsonic case, at least not over the entire time domain
of interest. Compared to the indicial angle-of-attack result,
which has a finite (noncirculatory) value at s = 0 as given by
linear piston theory,” the gust solution starts at zero lift at the
initiation of gust penetration and the lift asymptotically builds
to the steady-state (circulatory) result (see Fig. 1).

For the subsonic compressible flow case, the two-dimen-
sional sharp-edged gust response (s, M) was examined by
Lomax* using a similar approach to that described in Ref. 21
to derive the indicial responses caused by changes in airfoil
angle of attack and pitch rate. The subsonic gust result was
also obtained in approximate form as a sum of exponential
functions by Heaslet and Spreiter” using the reciprocal rela-
tions. One should note that if the gust function (s, M) is
determined in appropriate analytic form, there are powerful
numerical methods that can be applied to solve the Duhamel
superposition integral to find the resulting airloads caused by
an arbitrary gust field.

Lomax’s solution to the sharp-edged gust problem was ob-
tained from the two-dimensional wave equation using the

Initial value = 4/M

Final value = 2 n/f

Lift coefficient

Indicial angle of attack
------- Sharp-edge gust

Distance traveled, s (semi-chords)

Fig. 1 Generic comparison of subsonic indicial angle of attack
and sharp-edged gust solutions for unit magnitude changes in the
boundary conditions.
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method of supersonic analogy and subject to the appropriate
boundary conditions. The actual calculations aré fairly in-
volved, but exact analytical expressions for the airfoil pressure
distribution can be found for a limited period of time after the
gust entry. For the period 0 = s = 2M/(1 + M), the airfoil
pressure distribution for a unit gust disturbance is given ex-

actly by
n 8 M(f — x)
AGED="0m \ x + o M

where x is measured from the airfoil leading edge and f = at.
When integrated, this expression yields for the normal force
for a unit gust

ACi(s) = 25/ M )

where, by convention, s represents the distance traveled by the
airfoil into the gust.

One interesting result from Eq. (2) is that the effect of in-
creasing Mach number is to decrease the initial rate of lift
production for a given distance traveled during the gust pen-
etration. A similar result is found for the indicial angle-of-
attack case, where there is an increasing lag in the develop-
ment of the circulatory lift for higher subsonic Mach
numbers.” It will also be seen from Eq. (2) that the lift builds
rapidly during the gust penetration, and reaches close to one-
third of its final value of 27/8 per radian shortly after the
airfoil becomes fully immersed in the gust (s = 2).

For later values of time up to s = 4M/(1 — M %), solutions
for the airfoil pressure distribution during the gust penetration
are also known exactly from Ref. 24. Here, the chordwise
pressure loading takes a more complicated form, namely

8 M(f — x)
(1l + M) \/x+Mf

+%\/M(i—x)(c—x—Mf)|:

AC,(x, ) =

2K

V(@ - (1 - MY
EF'(\W) + KE'(¥) — KF'(¥)

Vix + MiYc — x — MP) ]

3

where E, K, E'(¥), and F'(¥) are elliptic integrals of various
kinds with modulus & given by

r = (F+ (1 + M) — 2¢
B G+ 00 + M

“)

and argument ¥ = sin""\/(x + M?)/c. The integration of these
equations to find the lift (and moment) is only possible by
means of numerical methods. However, from the resulting
pressure distributions the c.p. is found to reach the one-quarter-
chord by s = 2M/(1 + M) and remain there.

Later Values of Time

For s > 4M/(1 — M?) no exact solutions to the sharp-edged
gust problem are possible in subsonic flow by means of the
linear theory and more approximate methods must be adopted
(see Lomax et al.*! and Lomax®). Mazelsky® has used a re-
lationship between ¢, and the indicial response to a step
change in angle of attack ¢,. Based on the small-disturbance
theory of vortex sheets in a compressible fluid,” the result is

wg(s,M)=lf buls — 0, M) |
T J, 2—-o0

The preceding equation can be used to find the intermediate
variation in the gust response from the corresponding variation
in the indicial response. This latter result is known, albeit also

do s>2 (5

approximately in subsonic flow, from the work of various au-
thors including Mazelsky,”**® and more recently, Leishman.”
The solutions of Mazelsky are based on linear theory, whereas
the solutions of Leishman are based on both exact linear theory
and on various experimental measurements. Since the indicial
response cannot be simulated experimentally, unsteady mea-
surements on oscillating airfoils were used in Ref. 29 to relate
back to find the indicial responses. While there are quantitative
differences between the two methods, the qualitative behavior
in respect to variations in Mach number is the same.

Direct Indicial Simulation by CFD

CFD solutions provide results for problems that cannot be
solved analytically or simulated by experimentation. However,
these solutions are only available at enormous computational
cost, and even then are still subject to certain approximations
and limitations. Nevertheless, CFD solutions can help establish
results for model problems that would otherwise remain in-
tractable. CFD indicial type calculations are rare in the pub-
lished literature, but some nonlinear indicial and gust solutions
have been performed®~>* using various small-disturbance, fuli-
potential, and Euler solvers.

A series of more elaborate indicial calculations has recently
been performed by Parameswaran,”® who has computed indi-
cial angle of attack, pitch rate, and sharp-edged gust results
using a Euler/Navier—-Stokes method with a grid velocity ap-
proach. These results were computed using a two-dimensional
version of the transonic unsteady rotor Navier—Stokes
(TURNS) code, which is described in Ref. 34, These particular
results are extremely useful since they help establish the
bounds of linear theory, and also provide good check cases for
the indicial method over a range of conditions where exact
analytical solutions are mostly unavailable.

Computed CFD results for the sharp-edged gust problem are
shown in Fig. 2 for Mach numbers of 0.3 and 0.5, and are
compared to the exact linear theory obtained from Eq. (2) and
the integration of Eq. (3). The comparisons are excellent, and
lend significant credibility to the CFD resulits.

Functional Approximations to Gust Response

A key factor in the successful application of indicial-type
methods to arbitrary gust (or other input) problems is the func-
tional form used for the response function. Because of the
asymptotic nature of the indicial functions, Mazelsky,”® and
Mazelsky and Drishler™ have obtained exponential approxi-
mations to the stationary sharp-edged gust function. While the
exponential behavior of the indicial function is not an exact
representation of the physical behavior, it is sufficiently close
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Fig.2 Comparison of exact linear theory and CFD result for the
penetration of a sharp-edged gust, M = 0.3, and 0.5.
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for practical calculations. The exponential form also has a sim-
ple Laplace transform, thereby facilitating numerical compu-
tations for arbitrary forcing. This Duhamel superposition pro-
cess can be performed by various techniques, as will be
described. However, for some applications the exponential ap-
proximation to the indicial response may be inadequate, and
caution should be used.

A typical exponential approximation for the sharp-edged
gust is of the form

Uls. M) = 1 — >, GM)expl—g(M)s]  s=0 (6)
i=1

where, as shown,”' the G, and g: coefficients will, in general,
all be Mach number dependent, but with 2%, G, = 1 and g, >
O fori=1...N. The corresponding lift during the penetration
of a sharp-edged gust of unit magnitude is given by

ACI(t, M) = Q7B (s, M) 0

The steady-state value of the lift is simply the two-dimensional
flat-plate result with the Glauert correction. For practical en-
gineering calculations it is possible to replace the linearized
value of the steady lift-curve-slope 27/8 in Eq. (7) by a value
measured from experiment for any particular airfoil.

While the form of the exponential approximation in Eq. (6)
may be acceptable for applications in fixed-wing analyses (if
the approximating gust function coefficients at a given Mach
number can be suitably obtained), it is inconvenient for a he-
licopter rotor analysis. This is because each blade station en-
counters a different local Mach number as a function of both
blade radial location and azimuth angle. Therefore, repeated
interpolation of the G, and g, coefficients between successive
Mach numbers will be required to find the locally effective
gust function. While simple in concept, there is a relatively
large computational overhead associated with this type of re-
peated interpolation process, and the repetitive reinsertion of
the relevant coefficients in the superposition algorithm. In ad-
dition, it must be recognized that when superposition is applied
to the gust function to find the lift for an arbitrary field, each
exponential term in the series in Eq. (6) contributes an addi-
tional overhead. Since this process will be applied at many
discrete blade elements, the number of exponential terms in
the approximation must be minimized.

It has been shown™ that the asymptotic (circulatory) part
of the total lift from a step change in angle of attack in sub-
sonic compressible flow can be approximated by a two-term
exponential function, and for all subsonic Mach numbers the
results are related through a characteristic time that can be
scaled in terms of Mach number alone. Since for later values
of time it is known™ that the sharp-edged gust and indicial
angle-of-attack functions approach each other, it is sensible to
assume a similar behavior for the sharp-edged gust function,
i.e.,

Yols, M) ~ 1 — Z G exp(—g.8’s) s=0 (8)

where 1 — ZY, G; = 0, as before, but now the G, and g; are
fixed and considered independent of Mach number. It will be
shown that the form of this equation is valid up to at least the
critical Mach number of the airfoil section, after which non-
linear effects may be expected because of the development of
transonic flow. Also, note that if this simple compressibility
scaling approach given by Eq. (8) can be justified for the
sharp-edged gust function, it turns out to be not only more
computationally efficient, but also more accurate than repeated
linear interpolation of the G; and g, coefficients between dis-
crete Mach numbers for which the gust function coefficients
may be known.

Determination of y5,(s, M) from Linear Theory

It is desirable to find the coefficients of the exponential ap-
proximations for the sharp-edged gust response using both the
exact linear theory and CFD results, where available. The so-
lution for the coefficients can be formulated as a least-squares
optimization problem with several imposed constraints. To ob-
tain an approximation to the exact linear theory, one constraint
is imposed by matching the exact and approximate values of
the time rate-of-change of lift at s = 0. This helps constrain
the solution to ensure that the exact result will always be
closely obtained in the initial stages. This part of the response
is particularly important for transient aecrodynamic phenomena
such as BVI, which produces sound pressure levels at higher
frequencies. (Recall that the final value theorem relates the
response at infinite frequency to the initial value of the indicial
response.)

The exact solution for the lift on the airfoil during the pen-
etration of a sharp-edged gust of unit magnitude has been
given previously in Eq. (2), and the approximation by Eq. (7).
Differentiating these equations with respect to s and equating
their gradients at s = O leads to a definition for the first con-
straint, namely

=constats =0 ©)]

N
1
Gg = =
Z 'n'\/Il-/IB

Obviously, this cannot be obtained over the entire subsonic
Mach number regime. However, an evaluation of the right-
hand side of Eq. (9) shows that it is numerically close to 0.6
over the range 0.2 = M = 0.8. As M — 0, the slope tends to
infinity at s = 0, which is consistent with the exact incom-
pressible solution given by von Kdrman and Sears.'”

A second, and more rigorous, constraint is for the initial
conditions, namely that

ZG,.~1=0 (10)

In addition to the foregoing, we must impose that

G, 8, >0, i=1,2...N an

Finally, we know that as s — o, the airloads approach the
value given by the usual steady-state subsonic linearized airfoil
theory, i.e., for a gust of unit magnitude

Ci(s =, M) =27/f3 (12)

A 2N-dimensional vector of unknown coefficients can now
be defined as

G'={G, G,...Gy g & ...8n (13)

The vector in Eq. (13) can be chosen to minimize the differ-
ences between the approximating exponential gust function
and the exact or semiexact or CFD solutions over the domain
of s and M for which results are available. Recall that we seek
a single generalized gust function in terms of 2N coefficients,
whose exponents g, i = 1, N can be scaled by g for appli-
cation to different Mach numbers. As described previously, it
is also possible to use results from the indicial angle-of-attack
case to help find the asymptotic behavior of the gust response
as s — .
An objective function J(G) can be defined as

J= wJG, M) (14)
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where
JG, M) = 2 [CiM) — CUG., M) (15)

The minimum of J in the parameter space G will give the best
approximation to the exact linear theory over the domain of s
and 0.2 <M = 0.8.

The objective function minimization of J(G) in the param-
eter space G is subject to the constraints defined previously.
The equality constraints may be replaced by the penalty func-
tions, i.e.,

P(G)=R, (2 G, — 1> (16)

i=1

N 1 2
P,(G) =R, Gg — ——— 17

where R, and R, are penalty parameters. Thus, we obtain the
pseudo-objective function

J= 2 wd(G, M) + P(G) + PyG) (18)

i=1

which is then minimized to obtain the gust function coeffi-
cients G.

An optimization method was used to find the G coefficients
in Eq. (8). Exact results for the gust response were computed
at Mach numbers of 0.3, 0.5, and 0.8 using the solutions given
by Eq. (2) and by the numerical integration of Eq. (3) up to s
= 4M/(1 — M?). For the higher Mach number this corresponds
to finding an exact solution up to 8.88 semichord lengths of
airfoil travel, but this likely represents the highest Mach num-
ber for which linear theory is applicable. At M = 0.3, exact
results can be computed only for the short period of 1.32 semi-
chords. Asymptotic results for s > 10 for M = 0.3, 0.5, and
0.8 were computed using Eq. (5) with the indicial response
caused by angle of attack. The weighting terms w; were set to
unity for the results for the exact theory, and to 0.75 for the
asymptotic results computed from Eq. (5). There could also be
some advantage in weighting the results for higher Mach num-
bers, for example, perhaps to allow for some nonlinear effect.

During the optimization process it was found that for N = 1
unacceptably large cost functions resulted, rendering this low-
est-order approximation useless. On the other hand, the N =3
case produced approximately the same cost function as for the
N = 2 case. Because it is desirable to minimize the number of
coefficients, and thereby the number of states or deficiency
functions for numerical cost reasons, the N = 2 case was se-
lected. The final results are shown for Mach numbers of 0.5
and 0.8 in Fig. 3. It will be seen that the approximations match
the exact solutions almost precisely. The resulting coefficients
are given in Table 1. A summary of the gust responses for
extended values of time is shown in Fig. 4, where it is apparent
that while the final values increase with increasing Mach num-
ber, the initial growth in lift is less.

Note from Table 1 that the values obtained in the present
work for the coefficients of the generalized subsonic gust func-
tion as M — 0 are close to those given by Jones for the ex-
ponential approximation to the incompressible Kiissner func-
tion.”® This confirms that the results for the subsonic case are
closely approximated by scaling the g, coefficients by 8°; that
is, the aerodynamic gust responses are related in subsonic flow,
albeit approximately, through a characteristic time.

Determination of ¢5(s, M) from CFD

Sharp-edged gust results were computed in Ref. 23 using
the CFD analysis for a NACA 0012 airfoil at M = 0.3, 0.5,

Table 1 Summary of sharp-edge gust function coefficients

Guest function G, G, £ g
P(s) (Ref. 20) 0.5 0.5 0.130 1.0
Y(s, M) (linear) 0.527 0.473 0.100 1.367
Y(s, M = 0.5) (linear) 0.527 0.473 0.075 1.025
Y(s,M) (CFD) 0.670 0.330 0.1753 1.637
6 1 PrIthn s
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Fig. 3 Comparison of generalized exponential gust approxima-
tion with exact solutions given by subsonic linear theory for M =
0.5 and 0.8.
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Fig. 4 Summary of generalized sharp-edged gust response for
different Mach numbers.

0.65, and 0.8. A grid velocity approach was used to introduce
the gust velocity field. For the higher Mach number, there was
evidence of some nonlinearity (caused by the development of
a shock wave on the upper surface of the airfoil), so that in-
dicial coefficient results were obtained with a nonequal weight-
ing to the data. Again, the optimization process confirmed that
the N = 2 case gave a good overall approximation to the com-
puted data. Like the exact linear theory, the time-scaling of the
gust function by the factor 8° appeared to be a feature con-
firmed by the CFD analysis, at least in the subsonic flow re-
gime. The resulting coefficients for this generalized sharp-
edged gust function are given in Table 1, and the results are
plotted graphically in Fig. 5. The level of agreement of the
exponential indicial approximation with the TURNS results is
good, bearing in mind that this indicial function is generalized
in terms of Mach number alone.
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Fig. 5 Comparison of generalized approximations with TURNS
at M = 0.3, 0.5, and 0.65.

Response to an Arbitrary Gust

Within the assumptions of the linear theory, a general sta-
tionary gust field w,(x, r) can be decomposed into a series of
sharp-edged gusts of small magnitude. Using the indicial re-
sponse for a sharp-edged gust, the response to an arbitrary gust
field can be found using linear superposition in the form of
Duhamel’s integral. For example, the response to a continuous
gust field may be written as

sy = 27| L] ey o

ACHs) = 3 [VL do (s — o, M) da] (19)
where it is assumed that the in-plane velocity produces only a
quasisteady effect. While the linearity of an arbitrary gust
problem cannot necessarily be established a priori, especially
for Mach numbers above the critical Mach number, the tech-
nique has been well proven using experimental measurements
for oscillating airfoils in Refs. 29 and 35 for the Mach numbers
typical of helicopter rotors, as well as for control surface de-
flections.™*

The Duhamel superposition can be performed numerically
in various ways, including the state-space (continuous time)
form, or the one-step recursive formulation (discrete time)
form. Both numerical approaches are useful for application
inside a comprehensive rotor analysis, the former more so for
active control or aeroelasticity problems. Because of its higher
overall computational speed, the latter method is usually used
in comprehensive rotor codes.

By the application of Laplace transforms to the exponential
approximation to the sharp-edged gust function in Eq. (8), the
lift transfer function relating the output (lift) to the input (the
vertical gust velocity) can be obtained. For N = 2 (see later)
the lift transfer function is

2 _ 2_77 S G
MG =75 (E 1+ D,-p> 20

where D; = ¢/(2Vg,8). From this transfer function, the state-
space form of the equations can be written in the form 7 = Az
+ Bu where

z=[z(® O 2n

0 1
A= [“8182(2‘//6')234 —(g, + 82)(2V/C)B2] (22)

Awg(t)]

v (23)

Bu = [0 1]’[

The corresponding output equation for the total lift coefficient
caused by the arbitrary gust field is

AC4() = %T Cz = 2—371 a(f) (24)

where the output matrix is
C = [8:8:B'2VIc) (Gigi + Gag)B'(2VI)]  (25)

and «, can be considered as an effective angle of attack. Note
that the aerodynamic states, z, and z, (one for each exponential
term in the indicial function), contain all of the information
about the past history of the unsteady aerodynamic loads
caused by the imposed gust field. These equations can then be
solved using any standard ordinary differential equation solver
for any arbitrarily imposed gust field.

For discrete time, a finite difference approximation to the
Duhamel integral leads to a one-step recursive formulation,
and the various numerical procedures were initially developed
in Ref. 35 for airfoil motion using the indicial function con-
cept. These methods can also be extended to the gust problem.
For example, denoting the current sample by ¢ and the non-
dimensional sample interval by As, the lift may be constructed
from an accumulating series of small gust inputs using

ACE = QaiBy(UWVAw, — Z, — Z,] = QulBa,,  (26)

Again, the N = 2 case has been assumed. The terms Z; and
Z,, are called deficiency functions, which like the aerodynamic
states described previously, contain all of the time —history in-
formation about the aerodynamic forces. In this case, the de-
ficiency functions are given by the one-step recursive formulas

Z, =27, E + G(Aw, — Aw, ) Q7

Z, =27, E, + Gy(Aw, — Aw, ) (28)
where E, = exp(—g,8°As) and E, = exp(—g,8°As), and where
the subscripts 7 and ¢ — 1 are the current and previous time
steps, respectively.

Results and Discussion
Sinusoidal Gust

From the sharp-edge gust response, results can be computed
for the aerodynamic response caused by a stationary sinusoidal
gust, i.e., w(x, 1) = sin(w s — wx/V). This is a classical prob-
lem in unsteady aerodynamics, and was solved exactly for in-
compressible flow by Sears.”” The subsonic case has been eval-
vated by Graham® using similarity rules, and also by
Osborne™ and Filotas® using various other levels of approxi-
mation.

By the application of Laplace transforms the unsteady lift
transfer function for the two-dimensional case can be obtained,
as given previously by Eq. (20). There are two cases of inter-
est. First, if the gust is referenced to the airfoil leading edge
then x = 0, and so w(¢) = sin(w,?). If the gust is referenced to
the midchord, then x = ¢/2 and the forcing becomes w,(f) =
cos(ky)sin(w,r) — sin(k,)cos(w,t), which is equivalent to a
phase shift. The midchord was the reference point used in the
original work of Sears.”’

Results for a sinusoidal gust referenced to the airfoil mid-
chord have been computed for M = 0.2, 0.4, and 0.6 using the
indicial coefficients obtained from the approximation to the
exact linear theory. It can be seen from Fig. 6 that an inter-
esting spiral curve is obtained, which for all Mach numbers is
qualitatively similar to the incompressible case described by
Sears.”” (When the gust is referenced to the leading-edge of
the airfoil, a function is obtained that looks somewhat similar
to the Theodorsen function, as described by Kemp*' and Gies-
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Fig. 6 Effect of compressibility on the lift for a sinusoidal gust.

ing et al.”*) Figure 6 shows that the spiral tightens with in-
creasing gust frequency producing a reduction in lift amplitude
and a change in phase. Also, it appears from Fig. 6 that com-
pressibility affects the phase of the lift response more at a
given gust frequency rather than the amplitude, except in the
low-frequency or quasisteady region where there is both an
amplitude and phase effect.

Two-Dimensional BVI Problem

Comparison with CFD Solution

CFD calculations were made using TURNS* to obtain the
unsteady loads on a NACA 0012 airfoil interacting with a con-
vecting vortex of nondimensional strength I' = 0.2 traveling at
a steady velocity 0.26 chords (y, = y, = —0.26¢) below the
airfoil. Typical helicopter advancing blade conditions at Mach
numbers between 0.5-0.8 were considered, since these two
conditions serve to illustrate the significant influence of com-
pressibility on the BVI problem. The CFD results were com-
pared to solutions obtained using the indicial approach, which
although restricted here to the calculation of the integrated
airsloads, has a relative computational speed advantage of about
10°.

The tangential velocity in the interacting vortex was ap-
proximated as®

I'r

V. =
or) 277(7‘3" ¥ an)l/n

(29)

where n is an integer variable, and r is the distance along a
radial line emanating from the center of the vortex so that r’
= — x,)’ + (y — »), and x,, y, relative to a coordinate axis
at the leading edge of the airfoil. A value of n = 1 (Kaufmann
or Scully vortex) was used for the vortex model with r, =
0.05¢, although the interaction between the airfoil and the vor-
tex is sufficiently spaced in the cases considered so that the
core radius does not play a significant role. The reciprocal
influence of the airfoil on the vortex convection velocity and
trajectory was neglected.

Results for two subsonic Mach numbers and for a weakly
transonic case are shown in Fig. 7. It can be seen that the
influence of the vortex has affected the airfoil lift when it is
well upstream of the airfoil leading edge. This result is im-
portant for the computations because it sets a minimum up-
stream distance to establish the initial conditions for both the
CFD and indicial approaches. A lift minimum was obtained
just as the vortex passed the airfoil leading edge, followed by
a rapid increase in the lift as the vortex passed downstream
over the chord. Note that the agreement between the indicial
approach and the TURNS code is excellent at the subsonic
Mach numbers, and these results essentially confirm the valid-
ity of linear theory under these conditions.
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Fig. 7 Comparison with TURNS result for a two-dimensional
vortex-airfoil interaction, I' = 0.2 and y, = —0.26 for M = 0.5, 0.65,
and 0.8.

Even for the higher Mach number of 0.8, which mildly ex-
ceeds the critical Mach number of this NACA 0012 section so
that some nonlinearities caused from the transonic nature of
the flow are expected, the agreement in terms of peak-to-peak
lift and phasing is good. However, the lower part of Fig. 7
shows that there is a somewhat larger lift overshoot down-
stream of the airfoil trailing edge compared to that predicted
by TURNS. This is because of weak transonic effects, and was
evident in the computed pressure distributions where the for-
ward propagation of pressure disturbances from the trailing-
edge region were delayed by the local supersonic pocket on
the airfoil upper surface.

Also, it will be seen from the results in Fig. 7 that the effects
of increasing Mach number serves to attenuate the peak-to-
peak value of the lift response, which is exactly opposite to
that given by incompressible unsteady theory. Furthermore, it



876 LEISHMAN

is apparent that the effects of increasing Mach number introduce
a larger phase lag in the lift response (the slope is less during
the interaction), and this obviously becomes a significant con-
sideration when accurate noise predictions are an issue.

Comparison with Experiment

Experimental investigations of the idealized two-dimen-
sional BVI problem are rare. This is not surprising bearing in
mind the difficulties in controlling the development of the vor-
tex and preserving the two-dimensional nature of the interac-
tion. In the work of Straus et al.,*** a nominally two-dimen-
sional vortex was generated from a pitching wing upstream,
and this vortex was allowed to convect downstream and inter-
act with a two-dimensional NACA 0012 airfoil at a fixed angle
of attack. While this BVI-type encounter can be classified as
nominally two dimensional, three-dimensional effects must be
present to some (although undocumented) degree. Also, it
should be noted that the flow Mach number and Reynolds
number in the experiment were much lower compared to that
obtained in the rotor environment. .

The first case was for counterclockwise I' = —0.15, and
vertical miss-distance y, = y, = —0.24¢. Referring to the upper
part of Fig. 8, a lift maximum was obtained just as the vortex
passed the leading edge, followed by a sharp reduction in the
lift as the vortex passed downstream over the chord. The cal-
culations made using the indicial method were found to com-
pare quite well with the test data for the peak-to-peak lift and,
perhaps more importantly for acoustics, the phasing of the lift
response during the vortex encounter. The second case was for
a slightly closer interaction and with a vortex rotation in the
opposite (clockwise) sense, i.e., I' = 0.16, y, = y, = —0.19¢.
As shown in the lower of Fig. 8, in this case the lift reduced
to a negative peak as the vortex approached the airfoil leading
edge. Compared to the previous case, however, some discrep-
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Fig. 8 Comparison with experimental data for a two-dimensional
vortex-airfoil interaction. Upper plot for I' = —0.15 and y, =
—0.24¢. Lower plot for I' = +0.16 and y, = —0.19¢c.

ancies were noted as the vortex passed the airfoil trailing edge.
In this case, there was little lift overshoot after the interaction
that was measured in the experiment. It is possible that viscous
or three-dimensional effects play some role, and that the ini-
tially coherent vortex structure may have been modified after
the interaction. Nevertheless, in both cases the agreement with
test data is good in the critical region where the lift gradients
and unsteady aerodynamic effects are greatest.

Three-Dimensional Problem

The three-dimensional BVI problem is considerably more
complicated, and identifying individual BVI events in the he-
licopter rctor environment to the point where validation of any
aerodynamic model would be possible is extremely difficult.
However, several simpler BVI experiments with rotors have
been conducted in the controlled environment of wind
tunnels.**"* All of these experiments are based on one- or two-
bladed rotors with pressure-instrumented blades that encounter
a controlled isolated vortex generated upstream of the rotor.

The recent work of Refs. 50 and 51 is extremely useful for
validating the BVI aeroacoustics problem, because both un-
steady blade loads and acoustic pressures were measured si-
multaneously. In this experiment, a two-bladed rotor with elas-
tically stiff blades encountered a vortex (generated by a wing
placed about three rotor radii upstream of the rotor shaft) of
measured strength and location relative to the rotor. The BVI
event took place over the front of the rotor disk, where the
blade was effectively parallel to the longitudinal axis of the
generator vortex. The rotor was operated at nominally zero
thrust so that the effects of its self-generated wake on the blade
loads and acoustics would be minimized.

The location of the generating vortex relative to the rotor
(blade) was changed by adjusting the position of the generating
wing, with the vortex sign and strength being changed by al-
tering the wing angle of attack. For the present work, a non-
dimensional generator vortex strength of 0.36 was used with
a viscous core size that was 5% of the generating wing chord,
these parameters being based on the measurements of Taka-
hashi and McAlister.”® In addition, the tangential (swirl) ve-
locity of the vortex has been found to closely correspond to
the n = 1 case of the general profiles given by Eq. (29).

The unsteady airloads on the blade were measured by 60
pressure transducers distributed at three spanwise stations over
the blade. The acoustics were measured by arrays of micro-
phones located both in the near field (roughly 0.5 rotor radius
away) and the far field (roughly three rotor radii away) relative
to the rotational axis, with both microphone sets on the re-
treating side of the rotor.’®”' Since the indicial approach re-
quires integrated airloads, the chordwise pressures measured
at the three radial blade locations were numerically integrated.

The unsteady airloads on the rotor were modeled by apply-
ing the indicial method at 25 radial stations along the blade,
and including induced effects from the near trailed wake by
means of a Wessinger L-type model. In this approach the three-
dimensional spanwise loading (therefore including both trailed
and shed wake effects) is computed by an influence function
method, requiring the solution of a set of coupled linear si-
multaneous equations at each time step.

The acoustic pressures were calculated by using the acoustic
analogy in the form of the Ffowcs Williams--Hawkins (FW -
H) equation. In the present work Farassat’s formulation-1 was
used,”* where the acoustic pressure can be written as

’ _L_a._ ——_p—‘—/"———_
P, ’)"4natff [%(1 _M’ﬁ)lds
H
47m at ” [%(1— ﬁ)] s
o | |t ) s
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The first term in Eq. (30) is the thickness noise, the second
two terms are the loading noise. The quadropole term has been
neglected since in the Ames experiment the maximum local
Mach number only briefly exceeds the critical Mach number
of the airfoil section over a small part of the advancing blade
tip. The retarded time equation was solved using a binning
technique, which has the advantage of vastly increased com-
putational speed using formulation-1 at the expense of some
minor loss in accuracy.

Since the linearity assumptions of the indicial method do
not allow for variations in the form of the chordwise pressure,
an assumed pressure mode was used. For the noncompact cal-
culation used in the present work a chordwise pressure loading
was synthesized from the unsteady lift. In its simplest form
this mode shape can be the (analytic) subsonic form or another
(discretized) form as given by the CFD analysis that is then
linearly scaled as a function of angle of attack and the Glauert
factor. Similarly, the thickness loading was synthesized from
a mode shape, this being derived from either the no-penetration
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Fig. 9 Comparison of predicted and measured unsteady lift at
three radial blade stations during BVL zfc = ~0.25 and I = —0.36.

condition on the airfoil surface (a NACA 0012 in this case) or
from a (discretized) form generated by the CFD analysis. How-
ever, it was found that the acoustics pressures were insensitive
to the assumed chordwise pressure modes, and even in the
compact limit of a concentrated force dipole the predicted
noise signatures were not unreasonable.

The predicted unsteady normal force coefficient at the three
radial stations on the reference blade is shown in Fig. 9 for a
negative vortex strength, and with the vortex passing 0.25
chords below the blade. Like the two-dimensional case, the
airloads vary rapidly with respect to rotor azimuth position,
changing sign as the blade passes from one side of the vortex
to the other. Although the BVI event in this case is nominally
parallel, successive parts of the blade encounter the vortex over
a finite range of azimuth angles, with the interaction effectively
sweeping from the root of the blade out toward the tip. Under
these conditions some three dimensionality is produced, and
this is apparent in the acoustics. However, the airloads over
the extreme tip of the blade are critical and are responsible for
the majority of the acoustics.

While the overall agreement of the predictions with test data
was found to be good, there was a tendency to slightly over-
predict the peak-to-peak amplitude of the unsteady airloads.
Both the linear and CFD-based indicial functions were found
to give essentially the same results, with the CFD indicial func-
tion giving a slightly less rapid buildup in lift after the inter-
action. However, it is the slope of the C, curve or the time
rate-of-change of the airloads during the interaction that is
important from the perspective of the acoustics. Incompressi-
ble theory will always overpredict this slope. Note also that
while the unsteady loads decrease in magnitude moving out-
ward toward the tip, the BVI event takes place over a shorter
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Fig, 10 Comparison of near-field acoustic pressures using linear
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time interval since the blade travels further in a given azimuth.
Therefore, from an acoustics perspective, the outermost sta-
tions can be more important than stations just slightly further
inboard that may carry more unsteady lift.

Both the near- and far-field acoustics are sensitive to the
phasing of the unsteady airloads during the BVI. In addition,
the duration and phasing of the BVI event along the blade, the
Doppler magnification, and the distance of the event to the
microphone location combine to produce the net sound pres-
sure signature at a given time. The thickness sound pressure
further combines with the loading term, resulting in small var-
iations in phasing that can significantly affect the net noise
signature. Sample predictions of the near-field sound pressure
are shown in Fig. 10 and are compared with the acoustic pres-
sure computed directly using the TURNS code, with further
details given in Ref. 55. Note that both the CFD and linear
methods overpredict the peak-to-peak pressures, but the
TURNS code produces a better correlation with the test data
at the trailing edge of the pulse. This is expected because of
the more complicated nature of the flow physics on the blade
during this region, which involves the upstream propagation
of pressure disturbances from the trailing edge of the blade.
This effect is not explicitly represented in the indicial method.
Note that the acoustic pulse is received at the near-field mi-
crophone locations only about 10 deg after the BVI event. The
slight phase shift in the CFD results is caused by a 0.11 chord
lateral offset in the assumed location of the generator vortex,
a fact that only became apparent after the calculations had been
performed.

The far-field acoustics are considerably less in overall inten-
sity, with the peak sound pressures being about 20 dB lower
than in the near field. Referring to Fig. 11, note that the acous-
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Fig. 11 Far-field acoustic pressures at microphones 3 and 5, z/c
= —0.25 and I" = —0.36 (negative vortex).

tic pressures take on the characteristic positive or negative go-
ing pulse (depending on the sign of the generator vortex) that
has become well known as typical of a BVI event."* There are
two acoustic pulses per rotor revolution since each blade in-
teracts with the vortex 180 deg apart. Because of the lower
intensity sound pressures, the far-field noise levels exhibit
more noise, in part, because of reflections from the wind-tun-
nel walls. It will be seen that in the far field the pressure pulse
is received some 140 deg of blade rotation after the BVI event.
There was only a mild directivity for the four microphones in
the far field, so that the magnitude of the sound pressure was
much the same for all of the microphones. Note, however, that
with the longer path length to microphone 5 compared to mi-
crophone 3, there is a measurable phase lag of about 20 deg
of blade rotation in the arrival of the sound pulse. Figure 11
indicates that the current predictions are about 3 dB larger than
the measured values, although the character of the signal (and
therefore its frequency content) is captured very well with the
indicial method.

Conclusions

An approach has been described to obtain functional ap-
proximations, generalized in terms of Mach number alone, to
the unsteady lift on an airfoil penetrating a stationary sharp-
edge gust in subsonic flow. Comparisons with experiments and
CFD results have shown that it is feasible to compute accu-
rately the unsteady lift on an airfoil during encounters with
vortices in subsonic flow using indicial methods. It has been
noted that compressibility affects both the magnitude and phas-
ing of the unsteady airloads during a BVI encounter. Increas-
ing the Mach number tends to decrease the peak-to-peak un-
steady airloads in the high subsonic range, but accurate
predictions of the phasing of the airloads with respect to vortex
position is key to predicting the acoustics. When integrated
into a three-dimensional rotor simulation, the indicial method
provided good agreement with unsteady airloads measured on
the blades during a BVI event. Both the near- and far-field
acoustic pressures were found to be predicted to about a 3 dB
accuracy. In all cases, the essential character of the acoustic
signature was well represented. Along with the attractive com-
putational benefits, such levels of correlation give considerable
credibility to the indicial approach for aeroacoustic studies,
and may form the basis for future work with active aero-
acoustic control.
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